skip to main content


Search for: All records

Creators/Authors contains: "Marchal, Olivier"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Understanding particle cycling processes in the ocean is critical for predicting the response of the biological carbon pump to external perturbations. Here, measurements of particulate organic carbon (POC) concentration in two size fractions (1–51 and >51 μm) from GEOTRACES Pacific meridional transect GP15 are combined with a POC cycling model to estimate rates of POC production, (dis)aggregation, sinking, remineralization, and vertical transport mediated by migrating zooplankton, in the euphotic zone (EZ) and upper mesopelagic zone (UMZ) of distinct environments. We find coherent variations in POC cycling parameters and fluxes throughout the transect. Thus, the settling speed of POC in the >51 μm fraction increased with depth in the UMZ, presumably due to higher particle densities at depth. The settling flux of total POC (>1 μm) out of the EZ was positively correlated with primary production integrated over the EZ; the highest export occurred in the subarctic gyre while the lowest occurred in the subtropical gyres. The ratio of POC settling flux to integrated primary production was low (<5%) along GP15, which suggests an efficient recycling of POC in the EZ in all trophic regimes. Specific rates of POC remineralization did not show clear variations with temperature or dissolved oxygen concentration, that is, POC recycling was apparently controlled by other factors such as microbial colonization and substrate lability. Particle cohesiveness, as approximated by the second‐order rate constant for particle aggregation, was negatively correlated with trophic regime: particles appeared more cohesive in low‐productivity regions than in high‐productivity regions.

     
    more » « less
  2. Particle cycling rates in marine systems are difficult to measure directly, but of great interest in understanding how carbon and other elements are distributed throughout the ocean. Here, rates of particle production, aggregation, disaggregation, sinking, remineralization, and transport mediated by zooplankton diel vertical migration were estimated from size-fractionated measurements of particulate organic carbon (POC) concentration collected during the NASA EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) cruise at Station P in summer 2018. POC data were combined with a particle cycling model using an inverse method. Our estimates of the total POC settling flux throughout the water column are consistent with those derived from thorium-234 disequilibrium and sediment traps. A budget for POC in two size fractions, small (1–51 µm) and large (> 51 µm), was produced for both the euphotic zone (0–100 m) and the upper mesopelagic zone (100–500 m). We estimated that POC export at the base of the euphotic zone was 2.2 ± 0.8 mmol m−2 d−1, and that both small and large particles contributed considerably to the total export flux along the water column. The model results indicated that throughout the upper 500 m, remineralization leads to a larger loss of small POC than does aggregation, whereas disaggregation results in a larger loss of large POC than does remineralization. Of the processes explicitly represented in the model, zooplankton diel vertical migration is a larger source of large POC to the upper mesopelagic zone than the convergence of large POC due to particle sinking. Positive model residuals reveal an even larger unidentified source of large POC in the upper mesopelagic zone. Overall, our posterior estimates of particle cycling rate constants do not deviate much from values reported in the literature, i.e., size-fractionated POC concentration data collected at Station P are largely consistent with prior estimates given their uncertainties. Our budget estimates should provide a useful framework for the interpretation of process-specific observations obtained by various research groups in EXPORTS. Applying our inverse method to other systems could provide insight into how different biogeochemical processes affect the cycling of POC in the upper water column. 
    more » « less
  3. The goal of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign is to develop a predictive understanding of the export, fate, and carbon cycle impacts of global ocean net primary production. To accomplish this goal, observations of export flux pathways, plankton community composition, food web processes, and optical, physical, and biogeochemical (BGC) properties are needed over a range of ecosystem states. Here we introduce the first EXPORTS field deployment to Ocean Station Papa in the Northeast Pacific Ocean during summer of 2018, providing context for other papers in this special collection. The experiment was conducted with two ships: a Process Ship, focused on ecological rates, BGC fluxes, temporal changes in food web, and BGC and optical properties, that followed an instrumented Lagrangian float; and a Survey Ship that sampled BGC and optical properties in spatial patterns around the Process Ship. An array of autonomous underwater assets provided measurements over a range of spatial and temporal scales, and partnering programs and remote sensing observations provided additional observational context. The oceanographic setting was typical of late-summer conditions at Ocean Station Papa: a shallow mixed layer, strong vertical and weak horizontal gradients in hydrographic properties, sluggish sub-inertial currents, elevated macronutrient concentrations and low phytoplankton abundances. Although nutrient concentrations were consistent with previous observations, mixed layer chlorophyll was lower than typically observed, resulting in a deeper euphotic zone. Analyses of surface layer temperature and salinity found three distinct surface water types, allowing for diagnosis of whether observed changes were spatial or temporal. The 2018 EXPORTS field deployment is among the most comprehensive biological pump studies ever conducted. A second deployment to the North Atlantic Ocean occurred in spring 2021, which will be followed by focused work on data synthesis and modeling using the entire EXPORTS data set. 
    more » « less